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On determination of the characteristic equations 
for the stability of parallel flows 
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(Received 11 June 1965) 

The Orr-Sommerfeld equation is solved for large Reynolds number by use of 
inner and outer expansion theory. The method is shown to have distinct com- 
putational advantages over the method of solution due to Sommerfeld and Lin 
and to be applicable to a wider class of boundary conditions. The method can be 
simply extended to other characteristic problems in fluids involving viscous 
effects concentrated in narrow regions. 

1. Introduction 
The mathematical formulation of the problem of the stability of parallel 

flows of a viscous fluid is due to Orr (1906-7) and Sommerfeld (1908)) the first 
solution by Heisenberg (1924) being corrected and clarified by Lin (1945a). 
The original boundary -value problems dealt with considered boundaries which 
were solid walls, or else considered flows which eventually become uniform 
(i.e. boundary-layer flows). Many recent authors have used the same techniques 
for boundaries which were flexible or interfacial, The question of the validity of 
Heisenberg's technique could be raised in these cases, since it is anticipated that 
such boundaries would involve viscous layers of thicknesses not contemplated 
in Heisenberg's original solutions. Accordingly, we consider here the use of 
inner and outer expansion techniques? as an alternative approach to the problem. 
It is shown that this method involves a considerable reduction in algebra and 
analysis in that coefficients and eigenvalues are determined step by step in an 
automatic manner rather than through solutions of determinants, and also con- 
tributes to a clearer understanding of the action of viscosity in all regions as 
well as the nature and profile of the disturbance. The method also can be ex- 
tended conveniently to problems involving thermal effects, non-Newtonian 
effects, etc., and provides for higher-order corrections.$ 

It is convenient first to summarize the previous approach to the problem. 
For a parallel flow with velocity U(y), a small wavy perturbation in the velocity 
results in the Orr-Sommerfeld equation 

(l/aR)(D'- a') v =z iW(D2- a') V- ivD2W, (1) 

where W = U - c, c is the (complex) wave speed, a the wave-number of the dis- 
turbance, R a Reynolds number, D denotes differentiation with respect to y, and 

t See, for instance, Van Dyke (1964). 
$ The approach of Duty & Reid (1964) for the stability of Couette flow at high shear 

rates is equivalent to the present method to the lowest order. 
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v represents the y-dependent part of the vertical component of the disturbance 
velocity. At a rigid boundary, v and Dv (which is proportional to the horizontal 
components of the velocity) must both vanish. From consideration of the inviscid 
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FIGURE 1. Location and order of thickness of the inner regions. 

limit (see Lin 1945b, or Lin 1955, p. 55ff.) for undamped waves (c real), W is 
expected to be zero somewhere in the flow rkgime, say at y = yc. 

The expectation that aR is large for the onset of instability suggests an 
asymptotic solution to equation (1). The approach of Heisenberg and Lin to 
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the problem in essence compared the solution of equation (1) with that of an 
equation with constant coefficients by taking 

'u - &R)* 9(2/) + (aR)-*f,(y) + *.*I. (2) 

The highest-order terms obtained by substitution of this into equation (1) deter- 
mine four possible values of Q; they are found to be a double root Q = 0,  giving 
rise to two inviscid solutions, and Q = k J ( i W ) f d y .  The branch point in the 
integral at yc (the Stokes, critical, or turning point) raises the question of the 
analytic continuation of the functions across y,.. This was first satisfactorily 
accomplished by Lin, who used comparison with an equation with linear co- 
efficients (the so-called WKBJ method). Here the stretched co-ordinate 
7 = (aR)-* (y - y,.) is introduced, the approximation in this case giving the four 
solutions 1, 'I, x 3 ( ' I ) ,  x&), where 

the subscript c indicating evaluation at  yc. The two inviscid solutions are used in 
conjunction with either x3 and x4, or the values given by equation (2) with the 
remaining roots of Q giving, through use of the boundary conditions, four homo- 
geneous algebraic equations, hence a four by four determinant to evaluate in 
order to determine c as a function of R and a. 

The approach just described attempts to find an asymptotic solution valid 
throughout the flow region. It fails at the critical point, and the WKBJ is used 
then to patch the solution at  this point. The method adopted in the present 
approach is to find solutions valid in various pieces of the flow region, and then 
to join these piecewise solutions to one another in intermediate regions. While 
the approaches have much in common, the present method is believed to be 
more straightforward and to provide more simply an error estimate, as well as 
providing an algorithm for obtaining higher approximations (Lin 1955, p. 129). 

The use of any asymptotic method in the solution of equation (1) requires 
some knowledge of the magnitude of c. Accordingly, we divide the problem into 
three cases depending on the location of the critical point. These are sufficient 
to demonstrate the method. The cases are illustrated schematically in figure 1. 

2. Case I. Critical point near a rigid stationary boundary 
In  the solution of equation (1) for large aR, one anticipates that throughout 

most of the flow region (an 'outer' region) the derivatives of u with respect to 
y will all be of the same order. In  this case the right side of the equation is set to 
zero, giving the inviscid form of the stability equation. However, near the 
boundaries, viscous effects must be present in the form of a boundary layer in 
order to satisfy the boundary conditions. In  such a region (an inner region), 
it  is well known that co-ordinate stretching is necessary to provide a 'boundary- 
layer' equation, the solutions of which are then to be matched to the inviscid 
solutions. In general, equation (1)  will also have an interior shear layer at 9c; 
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for small c this layer is at the boundary rather than in the interior and in fact 
dictates the thickness of the layer. 

We take the lower boundary to be a rigid wall a t  y = 0. Letting y -  yc = ,q, 
where ,LC = O(aR)-", it  is known (Lin 1945a) that ,u = (aR)-* is the proper choice 
for n; this then implies that yc 6 O(p) for this scaling. The asymptotic form used 
in equation (2) anticipates that v is expressible as a Taylor series in inverse powers 
of the Reynolds number in all regions of the flow. In  light of more recent tech- 
niques in singular perturbation theory we let 

cn 

in the outer region, where a priori we specify only that 

limez+Je: = limEn+l/En = 0, 
P - f O  P-+O 

and allow the e: and cn to be determined by the matching procedure. However, 
for a problem which is both homogeneous and linear,? and in which ,u appears 
in the differential equation only in polynomial form, one set (say e z )  has a high 
degree of arbitrariness. We take e: = pn in the present case as a suitable choice. 
In  the case under consideration (c  < O(p)),  it is in fact usually sufficient to utilize 
only the ez, Eo and C1 terms in the expansion for a first approximation to c.  

Substituting equation (5) into equation (l) ,  the equation obtained is 

+ terms involving p to the third and higher powers. 

To the lowest order this is the equation used by Lin at the critical point; 
thus v* is a linear combination of l , ~ ,  x3, and x4. But x4is not of boundary-layer 
type; it grows exponentially as 7 --f + co and hence cannot be matched to the inner 
solution. The combination of the other three solutions satisfying v$ = Dv$ = 0 at 
y = 0 is then 

(7) 

where 70 = - Yc/p and p(70) = x3(70)/70x&(70)* 
For the outer region, substitution of equation (6) into equation ( 1 )  gives 

WD2En- ( P W + C L ~ W ) ; E ~ ~  = 0, (8) 

for n such that En >O(,u3Co). Heisenberg solved equation (8) by expansion in 
powers of a2. (This is equivalent to transforming equation (8) into an integral 

-f If it were decided that E,:, say, was to be of the form In p (or any other transcendental 
function of p), then WE = v:, = E? In p, v;+~ = v:, etc. The effect then is the same as 
multiplying ow (and V )  by ( l + l n p ) .  Similarly, when computing v:, n z l ,  only the 
exponentially decaying and constant parts of the homogeneous solution should be used. 
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equation and using the method of iterated kernels.) The solutions found in this 
manner are W 

@l(y, Y d  = w(Y) c a2nhn(y7 yl), (9) 
n= 0 

where 

m 

Here yI is an arbitrary reference point. For matching purposes, it is convenient 
to express these solutions also in power series. Letting z = y - yc, an alternative 
pair of solutions is easily found to be 

(these correspond to Tollmien’s (1935) solutions), where a particular choice of 

For W, = - c, from equations ( 1  1 )  and (12), 

Y1 M -4Yc$DK/D2K,} (136)  
Pl M - Y c l @ ,  

P z  M DW,/@D2W,, 7 2  M -DW,DW,/D2W,. 
To match ;ij to v* it is convenient to use 

q51(py) and $2(py) to v;, it appears that a proper choice is 8, = p-1,2.’, = 

to merge with the linear term in v;, and 

and $2, replacing z by py. In  matching 

- - 
€1 = 1 7  v1 = -TOP - a(T7o)l ( D 2 W , / m )  $2 + 4 1  

to merge with the constant. Since the merging is done at large y and since 
limx3 < O(e-q), no terms are needed to merge with x3. The constant A (of order 

unity) can only be determined after vT(y) is known. The appearance of $2 in El, 
however, introduces a p lnp  term which cannot be matched with the inner 
solution nor balanced by higher approximations. This must instead be balanced 
by a lower-order term in the expansion. The selection just indicated is in fact 
valid for E2 and 3,; for 8, we must use lnp, and then 

Thus in the inviscid region 

7+w 

31 = ? l o P  - - w l O ) l  (D2K/DK)  $1. 

V(Y) (1lP) $1(4 - 7oP - F(rlo)I (D2W,IDw,) 

x ($2(z) - $l(X)lnP) +A$,(z) +O(PlnP)* (14)  

Equation (14) is sufficient to determine the characteristic equation to the lowest 
non-trivial order for this order of magnitude of yc for the cases considered by Lin. 
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Case (1-1). Moving boundary at y = 1 

To satisfy the no-slip conditions at y = 1, a boundary layer of order (all)-$ 
must exist at y = 1 in which the solutions will be of the type indicated in the 
first inner region of Case 11. Letting [ = - (1 - y) (aB)*, equation (14) becomes 

which merges with 

in the layer of thickness (aR)-i-. The subscript 1 indicates evaluation at y = 1. 
Imposing the boundary conditions v** = dv**/dt = 0 at = 0, the characteristic 
equation is 

Case (I-2a). Antisymmetrical disturbance in aflow symmetrical about y = 1. 

The boundary conditions are v = D2v = 0 at y = 1. Since U satisfies equation (8), 
only one of these need be applied. Then from equation (14), 

Using equations (13), this is equivalent in the lowest order to 

in accordance with Lin ( 1 9 4 5 ~ ) ~  equation (6.15). (Note his mislabelling of the 
symmetry.) 

Case (1-2 b). Xymmetrical disturbance in aflow symmetrical about y = 1 

In  this case odd derivatives of Wand v must vanish at y = 1 , and hence from equa- 

in accordance with Lin (1945a), equation (6.14). 
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Case (1-3). Flow of boundary layer type 

Here V = O(e-ag) as y -+ co; this implies (DG+a@),,, = 0, giving 

in accordance with Lin (1945a),  equation (6.17). 
Note that the determination of the argument of z in the logarithmic term was 

accomplished in this process by the matching of E to v*. The necessity of going 
around the critical point in carrying out the integrals in the (D solutions can be 
avoided completely by working with @(y ,  By,), say, instead of @(y, 0). The use 
of the latter in this case was solely for comparison with Lin's work. 

Another interesting feature of the present solution is that the matching pro- 
cedure dictates that for small c some of the 2% must be of the form ,umln,u, which is 
not anticipated by equation (2). These logarithmic terms are forced by the parti- 
cular solutions in the higher-order approximations, and are now well known in 
boundary-layer theory as well as in low-Reynolds-number flows. While these 
are unimportant in the lowest approximation, they become vital in continuing 
the solution to  higher approximations. 

3. Case 11. Critical point in the interior of the flow away from bound- 
aries and extremum values of W 

For c no longer small, the shear layer with thickness of order p = (aR)-* 
moves to the interior of the flow, and a new layer with thickness of order 
E = (aR)-i takes its place a t  the rigid boundary. Thus a t  least four expansions are 
in general necessary : 

m 

v*([,E) - Ce:(e)vz(c) for 0 6 [ =  y/c: = 0 ( 1 )  (inner region I ) ,  (15) 
T&=O 

CO 

(16)  
- 
~ ( y ,  e) - 2 an(€) G,(y) for 0 < y < yc (outer region I) ,  

n=O 

m 

v**(q,p) N Ce:*(p)vz*(q) for 7 = ( y -  y,)/p = 0(1\ (innerregion 2) (17 )  
n= 0 

m 

and G(y, ,a) - C En@) Cn(y) for y > yc (outer region 2). (18) 
n=O 

Taking y = 0 to be a rigid boundary as in the previous case, again for con- 
venience we set e: = @. Rewriting equation ( 1 )  in terms of 5, 

d2v * 
x ( - &ic2 - + iv*)] + terms involving e to the third and higher powers, 

dC2 
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where a zero subscript indicates evaluation at y = 0. The first solution satisfying 
v* = Dv* = 0 a t  5 = 0 as well as being of boundary-layer type (i.e. it  does not 

(19) 
grow exponentially) is 

.Ji being the value in the first quadrant. Higher approximations yield 

vg = 1 - C(iw,)S - e-GwoP 

[(i + <(i&,)a + $i W,c2) e-c(iwo)* - 51 4 
0% .; = -__ 

(i W$)+ (20) 

and 

where 

For 5, again equation (8) will be used for the first approximations. Near y = 0, 

@D,(y, 0) = w,+yDW,+g(a2W,+D2W,)y2+B(D3WO+a2DWO)y3-t ..., 
1 1 D2Wo 1 DW, DW,D2W0 

w,z @D,(y,O) = - M',[ y+- 6 ( %  __ +a2 ) y3+- 1 2 ( T - - -  

so, to match 27; and v;, 

E ,  = l/€, go = - T&(iJ@ Q2 (y, O ) ,  
- 
€1 = 1, 51 = (1/%) @l(Y, 0 )  - 0% @2(y, 0). 

To match further, E2 = e,  and so ;il, must satisfy 

iW(D2-a2)v2-iv2D2W = (D2-a2)22ro. 

Ordinarily E2 is not needed except for higher approximations to the characteristic 
equation. 

At the interior shear region, neither x3 nor x4 are of boundary-layer type, so 
they cannot be used for matching. Picking a y2 < yc (corresponding to x2 = yz - yc) 
and of convenient size for computation, and letting 

@)i(Y, 0) = mi9d.4 + ni92(4 

(the @i(y, 0)  are convenient for this case since they are regular near 9 = O ) ,  where 
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Thus I$* = p-3, vg* = i(DW,/D2W,) (iK)sn2, 
a;* = p-9 Inp7 

g* = p-8, eg* = 1, vg* = (DW,/D2W,) (n,/% + n2 DIG), 
v;* = in2(i6)3 g2,  

and the equation satisfied by v t  is 

where 

and exp [ - i(xs + 1/3s3)] ds 

is that particular integral which does not grow exponentially as x -+ f 00. 

simple manner. The equations will all be of the form 
The process of finding higher approximations can be continued further in a 

where the L, are polynomials in g and n 2 4. The solution of equation (26) is 
obtainable by repeated use of the recursion relation 

-l/n (n = O ) ,  (av.) $ = { dn-1G 
n- (n 2 1). dxn-1 

For - n < arg it7 = arg x < +n, 

(the asymptotic expansions are from Luke (1962), chapter 6, where in his nota- 
tion G(x) = Gi(x) + iA i ( x ) ) ;  and the asymptotic expansions of 

and hence the asymptotic expansions of vz*, n 2 4, can then be found by term- 
by-term differentiation of equation (28). 

If, however, only the characteristic equation is desired, it  is seen that 
the determination of v** is not necessary. Since 2? and v' satisfy the same 
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equations, v** only serves to bridge the gap between their various regions 
of validity. As can be seen from the forms of the equations which the wz* 
must satisfy and from equation (28), all of the w** will have asymptotic 
forms which are dominated by polynomials in y plus lny times polynomials 
in 7. Thus the crossing of the second inner region is determined by 
which branch of the logarithm is to be selected, which was just seen to be 
-7r < argibj <in, and so the expansion used for V can be used for ?7 also 
under this restriction. The relations given for the v** determine the asymptotic 
form of w in this region, but are otherwise unnecessary. 

The characteristic equations corresponding to the boundaries considered in 
case I are then found from 

Many of the details of calculation are similar to those of case I and need not be 
repeated here. The characteristic equations are, for the various cases: 

Case (11-1) 

The resiilts of (I, 1) can be used exactly by replacing y by 1 - y and c by 1 -c .  
It is now 1 - c which is small. 

(Case (11-2a) 

Application of the boundary conditions to equation (29) gives 

Case (11-2 b) 

The boundary conditions and equation (29) give 

Case (11-3) 
Again using equation (29), 

4. Case III. Critical point near a non-rigid boundary or near an 
extremum value of W 

The solution in the first inner and first outer layer for this case are exactly as 
given for case 11. The difference is now in matching in the second inner region, 
the technique being the same as in the previous cases. 

In cases I and 11, DW, was assumed to be of order 1. If yc occurs near an ex- 
tremum of W ,  however, D K  will also be small, and the thickness of the layer can 
no longer be of order (aR)-*. A layer of thickness (aR)-a might at first glance 
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appear to be suitable from equation (1) but, since it is incapable of producing 
the proper singularity, it  cannot be joined to G. The layer thus must be of 
order (aR)-); the lowest order approximations are then solutions of 

+iD2W,v** = 0, 
d2v** 

i [O(aR)% OW, + +9"0"~] __ 
d4v** -- 

do4 do2 

where O = (y - y,) (aR)*. The solutions are x5, xs, x,, and 

8(8+ 2(aR)* DW,/D2W,), 

where, from Laplace's method, 

k = it(&)$ (DW,)2/16(D2W,)#, 

f = exp [ ( + i ~ ~ , ) t  (e + ( aR)* DW,/D2W,) P* - &PI 

and C, goes from 0 to iw, C6 goes from 0 to -i*, and C, goes from -i" to i", 
passing to the right of P = 0. 

These solutions approach the complexity of the full solutions of the Orr- 
Sommerfeld equation, which can be found for a parabolic profile in a similar 
manner. In  determining the characteristic equation for this case, it would be 
simpler to place this boundary condition a t  y = 0 and commence from there, 
eliminating the need for higher approximations in this region. Owing to the added 
complexity in this region, the characteristic equation was not carried out for 
this case. 

It is clear that this region cannot occur in a part where W becomes constant. 
However, in the case of a free surface with boundary conditions of zero shear 
stress and zero normal stress at the free surface, giving 

[D2v - (a2 + D2 W /  W)V], ,~ = 0 

[ (i/aR) D3v - WDV + V D  W],=, = 0,  and 

respectively, such a layer can be expected to occur if DW vanishes at y = 1. 
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